Additive Schwarz Domain Decomposition with Radial Basis Approximation

نویسنده

  • Zongmin Wu
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioners for pseudodifferential equations on the sphere with radial basis functions

In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the i...

متن کامل

Global and local radial basis function collocation methods for solving convection-diffusion equations Métodos de colocación de función de base globales y locales radiales para solucionar ecuaciones de difusión de convección

In order to assess the performance of some meshless methods based on Radial Basis Function (RBF) Collocation, it is presented a comprehensive comparison between global and multi-domain formulations for solving convection-diffusion equations. Global formulations included are the symmetric or Fasshauer’s method and the overlapping two-domain decomposition method (the classical additive Schwarz te...

متن کامل

Solving the Dirichlet-to-Neumann map on an oblate spheroid by a mesh-free method

In this paper, we study a mesh-free method using the Galerkin method with radial basis functions (RBFs) for the exterior Neumann problem of the Laplacian with boundary condition on an oblate spheroid. This problem is reformulated as a pseudo-differential equation on the spheroid by using the Dirichlet-to-Neumann map. We show convergence of the Galerkin scheme. Our approach is particularly suita...

متن کامل

An additive Schwarz method for variational inequalities

This paper proposes an additive Schwarz method for variational inequalities and their approximations by finite element methods. The Schwarz domain decomposition method is proved to converge with a geometric rate depending on the decomposition of the domain. The result is based on an abstract framework of convergence analysis established for general variational inequalities in Hilbert spaces.

متن کامل

Parallel scalability study of three dimensional additive Schwarz preconditioners in non-overlapping domain decomposition

In this paper we study the parallel scalability of variants of additive Schwarz preconditioners for three dimensional non-overlapping domain decomposition methods. To alleviate the computational cost, both in terms of memory and floating-point complexity, we investigate variants based on a sparse approximation or on mixed 32and 64-bit calculation. The robustness of the preconditioners is illust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002